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The hydroxyapatite (HAP) ceramic, widely used as a biological active coating for the metallic implants in arthroplasty, 
presents different characteristics depending on the synthesis process. The surface characteristics such as its surface 
chemistry, surface energy, topography and roughness are important properties to be determined when considering the use 
of an implant. In the present work, the magnetron sputtering deposition method was used to deposit HAP coatings on 
Ti6Al4V alloy, in order to investigate the effect of thermal treatment on their surface roughness and wettability. The coatings 
were investigated for their composition and crystallographic structure by EDX, FT-IR and XRD, as well for their surface 
morphology by SEM and stylus based surface profilometry. The assessment of the wettability was done by using the sessile 
drop method, the contact angles for various liquids, the surface free energy and the work of adhesion on water being 
determined. After annealing the HAP coatings became crystalline, preserved their elemental composition, but exhibited 
different surface roughness and work of adhesion on water.   
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1. Introduction 
 
The hydroxyapatite (HAP) ceramic is a widely used 

biological active coating for the metallic implants used in 
arthroplasty. It is composed of the essential elements of 
human tissues, as calcium and phosphorus (Ca5(PO4)3OH), 
being chemically similar to the main inorganic constituent 
of natural bone, which is a carbonate-containing calcium 
deficient hydroxyapatite [1]. Due to its composition and 
porous structure, the synthetic HAP coating is inherent 
biocompatible, forming a strong bond with the bone [2].   

However, HAP coatings present different 
characteristics depending on the synthesis process. It is 
known that the crystalline HAP is a better alternative to 
the amorphous one, as it is less prone to dissolve in the 
biological surrounding fluids [3, 4]. The surface 
characteristics of HAP coatings, as the surface chemistry, 
surface energy and topography, are important properties to 
be considered for implant coating [5–7]. 

In the present work, the magnetron sputtering 
deposition method is used to prepare HAP coatings on a 
Ti6Al4V alloy, in order to investigate the effect of thermal 
treatment (performed under different conditions) on the 
surface roughness and wettability of hydroxyapatite films.  

 
 
 
 
 

2. Experimental details 
 
2.1. Materials 
 
The Ti6Al4V alloy was cut into discs with 20 mm 

diameter. A HAP disc, 1″ diameter, 99.9% purity, from 
Kurt J. Lesker Company, was used as magnetron target for 
depositing thin films. The target and substrate materials 
were ultrasonically cleaned with acetone, ethanol and de-
ionized water for 10 min.  

 
2.2. Magnetron deposition 
 
The base pressure in the deposition chamber was 

1.3x10-4 Pa. The deposition was done in Ar atmosphere at 
6.6x10-1 Pa. The main deposition parameters were as 
follows: RF power fed on cathode: 50 W; substrate bias 
voltage: -60 V; substrate temperature: 800 C; distance 
cathode-substrates: 25 mm. The thickness of the HAP 
coatings was of about 350 nm.  

 
2.3. Thermal annealing 
 
After deposition, the samples were annealed in a 

computer controlled oven, for 30 and 120 minutes at 
600oC and 800oC, with an annealing gradient of 12oC/min, 
in a flux of dry nitrogen and water vapours.  
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2.4. Elemental and phase composition  
 
Energy dispersive X-ray analysis (EDX) was used to 

investigate the elemental composition of the coatings. 
EDX analysis was carried out on a scanning electron 
microscope (XL-30 – ESEM TMP), equipped with energy 
dispersive X-ray spectroscopy. An average composition 
was obtained by measuring in 3 different points on the 
material surface. 

Fourier transform infrared spectroscopy (FTIR) of the 
samples were carried out using a Jasco FT/IR 6300 
spectrometer, 4 cm−1 resolution and 16 scans using an 
ATR (Attenuated Total Reflectance) unit, which permits 
the spectra collection without any special sample 
preparation. The range of frequencies was from 350 to 
4000 cm−1. In order to obtain a good signal-to-noise ratio, 
ten scans were collected and averaged. 

The phase compositions of the HAP target, Ti6Al4V 
alloy and of the films were determined by X-ray 
diffraction analysis (Rigaku MiniFlex II, with Cu Kα 
radiation). 

 
2.5 Surface morphology 
 
Surface roughness parameters were measured with a 

Dektak 150 surface profiler with a low-inertia stylus 
sensor (12.5 mm radius). The measurement was taken on 
4 mm scan length with 48 µN contact force and 20 µm/s 
scan speed. Ten profilometry measurements were made for 
each specimen and a mean value was calculated. There 
were determined the following roughness parameters: Ra - 
average roughness, Rq - root-mean-square roughness, and 
Sskw - skewness, representing the symmetry of the profile 
about the mean line. They were obtained from the 
following equations:  
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The surface morphology was also observed by 

scanning electron microscopy, using a XL-30 – ESEM 
TMP microscope.  

 
2.6. Contact-angle measurement 

 
The wetting properties of the Ti6Al4V alloy, of the as 

deposited HAP and thermal annealed HAP surfaces were 
studied by measuring the contact angle between the 
surface and different liquids droplets, using a standard 
Hamilton micro-syringe (1 ml). The test was conducted in 
air at 20 °C, using an Attension TL101 tensiometer (KSV-

Instruments). The mean value for the angle was the 
average of five measurements for each sample, deposited 
on different regions. 

The coatings’ surface free energy (γs
tot) was calculated 

by measuring the contact angle between the samples and 
the drops of three different liquids with known surface 
tension polar (γL

p) and dispersive (γL
d) components [8]. 

The liquids were chosen to cover the largest possible range 
from highly polar (water) to almost completely non-polar 
liquid (diiodomethane). 

In Table 1, the values of components of the surface 
free energy of the liquids used in the determinations are 
given.  
 

Table 1. The surface tension parameters of the liquids 
used for surface free energy determination. 

 
Liquid γL

tot 

 (mJ/m2) 
γL

d 

(mJ/m2) 
γL

p 
(mJ/m2) 

deionised water 72.8 21.8 51 
ethylene glycol 48.0 29.0 19 
diiodomethane 50.8 50.8 0 

 

3. Results and discussions  
 
3.1. Elemental and phase composition 
 
EDX analysis of the coatings reveals that all the Ca/P 

ratios are close to 1.67, which corresponds to a 
stoichiometric HAP, as presented in Table 2. The data 
were calculated by excluding the signal from the Ti6Al4V 
substrate. The oxygen concentration, higher than expected, 
is probably due to the signal arising from the native 
titanium oxide formed on the Ti6Al4V surface, adsorbed 
oxygen due to the porosity of the coating, and the 
overestimation of the oxygen in EDX analysis. As an 
example, Fig. 1 shows the EDX spectrum performed on 
the HAP sample annealed at 6000C for 120 min. As the 
HAP coatings are relatively thin, the spectrum also 
contains the signature of the substrate elements (Ti, Al and 
V), as well as some oxygen from the native oxide formed 
at the alloy surface. 

 
 

Table 2. The EDX composition of the HAP coatings 
 

Coating 

Annealing 
conditions 

Elemental composition  
(at. %) 

O Ca P Ca/P Temp 
(oC) 

Duration 
(min) 

HAP - 1 - - 83.1 10.5 6.4 1.63 
HAP - 2 600 30 93.6 4.0 2.4 1.63 
HAP - 3 600 120 94.0 3.7 2.2 1.66 
HAP - 4 800 30 93.8 3.8 2.3 1.65 
HAP - 5 800 120 94.2 3.5 2.1 1.67 
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values are the results of 5 different measurements, the 
standard deviation being also calculated.  

The contact angle θC is a macroscopic quantity, and it 
is useful in the characterization of the wetting properties of 
a surface, even though the latter is actually determined by 
the microscopic properties of the material.  Young [21] 
observed more than two hundred years ago that the contact 
angle, θC, is related to the surface tensions pertaining to 
the relevant interfaces, γij, where ij can be sv (solid-vapor), 
sl (solid-liquid), and lv (liquid-vapor) in the following 
way: 

 

cos ஼ߠ ൌ
௦௩ߛ െ ௦௟ߛ

௟௩ߛ
                                   ሺ4ሻ 

 
known as the Young-Dupré relation [22]. 

The surface free energy of a solid surface gives a direct 
measurement of intermolecular interactions at interfaces, 
having a strong influence on wetting, adsorption and 
adhesion behaviour [23].  

Considering the contact of one liquid (L) on one solid 
surface (S), in an environment equivalent to air, the work 
of adhesion of the liquid on the solid surface can be 
expressed as:  

 
 

௔ܹௗ௛ ൌ ௌߛ ൅ ௅ߛ െ   ௌ௅                            ሺ5ሻߛ
  

where γL and  γLS are the surface energies of the liquid and 
solid, respectively, and γSL is the surface energy of the 
liquid on the solid surface.  

Since the adhesion is due to London dispersion forces, 
γd, and to polar forces such as hydrogen bonding γp, 
Fowkes [24] has described the γSL as: 

 

ௌ௅ߛ ൌ ௌߛ ൅ ௅ߛ െ 2ටߛୗ
୮ටߛ୐

୮ െ 2ටߛୗ
ୢටߛ୐

ୢ               ሺ6ሻ   

By introduction of the equation (6) in the eq. 5, the 
expression for work adhesion of the liquid to the solid 
surface in air is: 

௔ܹௗ௛ ൌ 2ටߛୗ
୮ටߛ୐

୮ ൅ 2ටߛୗ
ୢටߛ୐

ୢ                               ሺ7ሻ  

As the surface tension parameters of the used liquids 
are known from the literature (Table 1), we used the 
Fowkes approach to determine the total surface free 
energy γs

tot of the samples, comprising the dispersive γs
d 

and the polar γs
p  parts, as presented in Table 4.  

The contact angle between a solid and a liquid 
represents the mixed result of the chemical (chemical 
bonding), physical (physical bonds, as promoted by the 
van der Waals and other non-covalent interactions) and 
mechanical (mainly surface roughness) interactions 
between the two media [25]. So, a high contact angle is the 
result of a small surface area between the liquid and solid, 
determining a low surface energy and a high work of 
adhesion. 

Our results show the decrease of the work of adhesion 
of all HAP coatings, as compared with the substrate alloy. 
The contact angle between liquid and HAP coating is a 
function of dispersive adhesion (due to the interaction 
between the liquid and solid molecules), and of the 
cohesion (due to the interaction between the liquid 
molecules themselves). In the studied cases, a low 
adhesion and a strong cohesion resulted in a relatively 
poor wetting, as relatively high contact angles were 
measured, except for the HAP-3 coating. The last result 
demonstrates that the crystalline HAP coating obtained 
after annealing at 6000C for two hours, due to its high 
wettability, represents a good candidate as ceramic 
biocompatible coating to be used for medical implants. 

 
 

Table 3. Roughness parameters of the investigated samples 
 

Sample Ra 
(µm) 

Rq 
(µm) 

Sskw 
 

Ti6Al4V 0.054±0.002 0.070±0.003 -0.01±0.10 
HAP - 1 0.292±0.096 0.369±0.108 -0.15±0.08 
HAP - 2 0.330±0.161 0.422±0.175 -0.39±0.07 
HAP - 3 0.378±0.071 0.463±0.072 -0.65±0.04 
HAP - 4 1.152±0.139 1.339±0.283 -0.83±0.01 
HAP - 5 1.416±0.203 1.672±0.253 -0.81±0.01 
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Table 4. Contact angles, the total surface free energy, its polar and dispersed components, and the work of adhesion 
for water, of the investigated surfaces 

 
Sample Contact angle θ (0) Surface tension parameters  

Wadh
water 

(mN/m) water ethylene di-iodomethane γs
tot 

(mN/m) 
γs

d 
(mN/m) 

γs
p 

(mN/m) 
Ti6Al4V 67.09±2.07 43.65±1.21 48.10±0.84 43.27 33.29 9.98 99.00 
HAP - 1 70.32±0.03 84.22±1.49 55.81±2.15 31.43 24.86 6.57 83.16 
HAP - 2 83.04±0.95 40.79±0.02 32.99±0.18 45.33 43.22 2.11 82.14 
HAP - 3 54.73±0.02 94.91±1.30 40.98±0.25 36.57 27.98 8.58 91.25 
HAP - 4 101.56±7.97 98.92±4.39 56.26±1.04 28.04 27.71 0.32 57.28 
HAP - 5 108.81±7.04 78.69±5.16 53.22±3.13 32.10 32.03 0.08 56.81 

 

 
 

Fig. 2. The FT-IR spectra of the HAP coatings 

 

Fig.3. XRD patterns of the HAP target, substrate 
Ti6Al4V alloy, and HAP deposited films. 

 

 
 

Fig. 4. SEM images of the as-deposited HAP coating 
(HAP-1, with an insert for a higher resolution) and 

annealed at 6000C for 30 min (HAP-2) 
 
 

4. Conclusions 
 
In the present work, the RF magnetron sputtering 

deposition method is used to form HAP coatings, with a 
thickness of about 350 nm, on Ti6Al4V alloy substrates. 
The as-deposited HAP coatings were amorphous. To 
promote their crystallization, the samples were annealed in 
an oven for 30 and 120 minutes at 600 oC and 800 oC, in a 
flux of dry nitrogen and water vapours.  

The elemental analysis revealed that all the coatings 
presented Ca/P ratios close to 1.67, indicating the 
formation of a stoichiometric HAP. 

By FTIR analysis, some bands attributable to HAP 
were evidenced, in both as-deposited and annealed films. 
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The signature associated with a stoichiometric HAP 
around 1100 cm-1 was observed in all coatings.   

All the annealed coatings could be identified as 
crystalline HAP, no extra phases being detected.  

The roughness parameters Ra and Rq increased as 
compared to the substrate, and further after annealing, in a 
direct relation with the annealing temperature. The 
modulus of the negative skew of all the coatings are higher 
than that of the substrate, and the modulus values increase, 
as expected, with the annealing temperature and period, 
implying that the shapes of the individual valleys are 
increasingly divers.  

The obtained results show a lower work of adhesion 
of all HAP coatings, as compared with the substrate.  

We have demonstrated that the crystalline HAP 
coating obtained after annealing the as-deposited HAP at 
600 oC for two hours, due to its high wettability, represents 
a good candidate as ceramic biocompatible coating to be 
used for medical implants.   
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